ON THE CHARACTERS OF SOME PALEOZOIC FISHES．

$1: 4$
E．D）Copis．
（With ilates xxvin－xxuma．）

Char．Gex：The single tooth which represents this genms has an elongate compressed crown with two opposite simple cutting elges． Both faces are convex，the one much more so than the other．No lat－ eral processes or denticles．The most remarkable peculiarity is in the root；it is rery small，having no greater width than the crown，and contracting from the base of the crown to a truncate termination but a little distance removed from the former．

The crown of the tooth resembles that of an Oxyrhina，but the root is totally different．In this respect it resembles a Dendrodus．

Char．Specif．：Cutting edges of tooth continued to base of crown． Surface of crown everywhere smooth．Truncate extremity of root a crescent with obliquely truncate horns with coarsely rugose surface． Whore the cutting edges are vertical their surface is below the more conrex side of the crown．The root has a lateral edge at each side， which extends obliquely from below the cutting edge to the lateral angle of the truncate base，and is marked off fromi the base of the crown by a constriction．The base of the crown is openly emarginate by an angle of this constriction．On each side of this emaremation the surface is transsersely wrimkled．On the same side the root is similarly wrimkled；on the opposite side the wrinkling is less distinctly transverse．
\qquad
\qquadDiameters of crown above basa：
Longiturlinal 011
Transversi 015
liameter of root：
Longitndinal －11゙き
Transverse II1；

If this species be a Cladodont shark，which is quite possible，it agrees with Lambdodus St．J．and W．in its single simple crown，but that
genus has a widely expanded horizontal root, thus differing generically from Styptobasis.

The Styptobasis Finightiana was found by Mr. Wilbur C. Kmight (to whom I dedicate the species with much pleasure), in what he determines as the Permian formation in eastern Nebraska. It was a large shark of carnivorous habits, and its presence indicates the existence of a marine filuna whose remains have not yet been discovered.

II.-On New Ichthyodorulites.

Hybodus regularis, sp. nos. Fig. 2.
Dorsal spine elongate, gently curved to the apex from the middle. Anterior border rounded, posterior rather broadly truncate, the latter fissured to two-fifths the length of the spine from the base, and two and two-thirds times as far from the base as the commencement of the anterior sempture. The sculpture of the sides descends to opposite the middle of the posterior fissure. Thus the naked inserted portion of the spine is relatively short, and the sculptured portion is long. The latter is also nearly plane. The sculptures consist of longitudinal ribs, which are similar on the front and sides of the spine. Their interspaces or grooves are as wide as the ridges on the front and the anterior half of the spine, but they become narrower on the posterior half, while the ridges are scarcely narrower. The latter are everywhere regular, and do not inoseulate, but run out successively toward the extremity on the posterior side. Eight ridges may be counted on the side at the middle of the length and thirteen near the base. Bottoms of the grooves smooth. There is a wide smooth band of surface on each side of the series of teeth, which is separated by an obtuse angle from the lateral face. The teeth are small, acute, and directed downward. They form two approximated rows, the teeth of one row alternating with those of the other.

Measurements.
Millimeters.
Tutal length (10 millimeters added for apex) 90
Length of smooth base in front... 48
Length of posterior fissure 129
Diameters at middle of fissure-
Anteroposterior
23
Transverse... 14
Diameter (anteroposterior) at middle of length
Between apices of teeth of one row... 10
The fine specimen on which this species is based was obtained by Jacob Boll from a soft Mesozoic limestone in Baylor Connty, Texas, which is probably of Triassic age. The species approaches most nearly the Hybodus mojor of Agassiz, from the Muschelkalk. In that species the teeth are stated to be mere tubercles, which is not the ease in this species.

Ctenacanthus amblyxiphias, sp. now. Fig. 3.

Spine elongate, but little curved, moderately compressed; the pos terion face with a that median plane bounded by a shallow groove on each side. The ridges are wider that their interspaces, and they gradually become smaller posteriorly, so as to be half the diameter of the anterior ribs. The anterior borler consists of a single rib of twice the diameter of the largest lateral ribs. Its tront surface is smouth; the sides are marked with shallow grooves directed downard, and the border is serrate with subaente tubercles, which point hackward. The tubercles of the ribs are elosely placed and vary from romm to trans. verse in shape, and have a finely grooved surface. The line of the posterior hooks is flush with the sides of the spine. They are small, decursed, and subacnte.

The aper of the spine is wanting, so I can not give its length with certainty. It was probably about $10 \frac{1}{2}$ inches. Measurements: Length of fragment, 190 millimeters; length of base presented (at front), 42 millimeters; diameters at middle, anteroposterior, 2.8 millimeters; transverse, 17 millimeters; transverse diameter of spine 140 millimeters, from base of fore surface 11 millimeters.

The Dermian formation of Texas; W. F. Cummins.

IIf.-On the Cranial Strugture of Macropetalichithys.

The typical speeimen of the Macropetalichthys: rapheidolahis Owen remains one of the best for the elucidation of the type of tishes which it represents, althongh it is very imperfect. It has the advantage of having lost most of the surface of the cranial ossifieation, so that its true structure is the more easily determined. The cavities of the cranimm are ocenpied ly the Corniferons limestone, which formation is its proper horizon, and one of the orbits contains a characteristic brachiopolous mollusc. The extremity of the muzzle is broken a way obliquely, and the (?) maxillary region of the right side is lost. The matrix has been split from the inferior surface so ats to show mom of the structure of the latter.

The orbits are much in advance of the line dividing the superior headslield transversely into equal halves. There are no distinct indications of the existence of hyomanlibular supports of a lower jaw. There are minsmmetrical transerse sections of hollow rods, which form areat immediately behind the position of the orbit on the inferior fratured surface of the specimen. The fractured surfaces are suboral, and have different directions of their long axes, owing probably to different directions of pressure. This they would be liable to trom the extreme temity of their walls. It is probable that this geme had a lower jaw. As to the npper jaw, this was probably present also, but whether it belongs to the palatopterygoid areh or to the maxillary can not be Proc. N. 11. $91-29$
stated. Its presence is indicated by the longitudinal transversely concave inferior surface of the element called jugal below. This articnlar surface might have supported some form of tooth, but as no such have been found associated with the rather abundant remains of Macropetalichthys, it is more probable that a distinct element was attached to this surlate.

As is well known, the superior surface of the head-shield is divided into symmetrical tracts by well-marked lines. These areas have been regarded as the osseons cranial elements, and have been named by Newberry in correspondence with those of higher vertebrata.* The lines referred to, however, are not sutures, bnt tubes which belong to the lateral line system; and they traverse the centers of the true bony elements insteal of bounding them. They join at the centers of some of the clements, and in such cases mark the points of origin of the osseous radii, whose direction they follow. The direction of these tubes is as follows in the present species, and approximately in all the other members of the genns: In the first place there is a frontal lyra, whose branches are parallel for a distance in front of the orbits (as far as the specimen is preserved), and which begin to converge at a point a little in front of the anterior borler of the orbit. They join on the middle line about half an orbit's diameter behind the line comecting the posterior borders of the same. From this point they diverge at an angle a little greater than 90 degrees to a point immediately behind the smperior border of the orbit, and nearly two orbits diameter posterion to the latter. From this point two lines diverge, one toward the externo-posterion angle of the skill, the other downwards and forwards at an angle a little over 90 agegres from the other branch. The lines are all perfectly straight except those of the lyra, which are bent just in front of the anterior border of the orbits. That these lines represent tubes is realily seen where they are broken aeross. That of the lyra has a subtriangular section. Below it, in front of the orbit, is a smaller one of round section which the fracture of one side enables me to trace as far as opposite the anterior border of the orbit.

In their distribntion these tubes do not nearly resemble those of Homostens as representel by Traqnair. \dagger A eloser resemblance can be traced to those of Coceosteus $\frac{+}{t}$, of Dinichthys, and espeeially to those of Titanichthys.§ The lateral branches of the frontal lyra monte posteriorly at an angle in Dinichthys tervellii, are slightly separated by a trams. verse tube in Titunichthys agussizii, and are more widely separated in Coccostous decipiens. In all three, divergent branches extend posteriorly, is in Macropetalichthys. In the three forms mentioned, these posterior lramehes send, anteriorly and exteriorly, a branch from a point close to the posterior border of the skall, on each side. This mar-

[^0]ginal tube sends a branch laterally to the external angle of the skull in all the genera mentioned, except in Aacropetalichthys, where this point can not he demonstrated in my specimen, owing to the loss of the border. Still more anteriorly on the postorbital hone it diverges agatin, sending a short branch inward and one forwarels in Coccostens and Titanichthys. In Imichtings terrellii it noes not divide, hat continures, innl joins the lateral tube of the lyar. In both Coccosteus and Maceropeta!ichthys the tramserse branch extends towards the middle line. I the former it unites with that of the opposite side, and forms at its middle portion, the posterior border of the lya. In Macropetalichatis. on the other hand, it joins the posterior tube at an angle well behime the extremity of the lyara als already deseribed. Thus the last-mamed genus resembles Coccostens in this one proint more than it does any of the other Arthrodira. (rig. 6.)

The cranial segments discernible are ans follows. They may he readily traced on the specimen, since the senptured smbace and indeed the greater part of the bone-substances have disappeared, and the cast of the inferior surfince is distinctly preserved. This surface, is however, wanting from most of the top of the mazzle, so that the relations of the ethmoid elements can not be madeont. From the middle of the superion border of the orlnits forwards extends an element which is prefrontal or frontal; but which one the injury to the top of the muzzle does not permit me to determine. It extends down on each side of the mazzle in front of the orbit. At the anterior border of the latter, it is pierceel upwards and forwards by a deep moteh-like groove which receises a corresponding wedgelike anterosuperior extremity of the element which I call provisionally the fugal on malar element. This bone extends below and behind the orbit, containing in the latter region a center of radiating ossification. The median or (?) frontoparietal element encroaches on the median element of the top of the mazzle as far forwarls ans oposite the midde of the ond by a consex anterion border. Its ossification radiates from the innction of the lateral branches of the lyra, in all directions, and, white its anterior and lateral borders are easily discernible, its posterior ones are not so clear. It probably extends to a point half way between its anterior border and the posterior border of the head-shieh. The posterion section of the prefrontal extends obliquely backwards and is suceeded by a wide longitudinally oval element, which from its position might be termed at postfrontal, althongh it includes within itself the region of the postorbital. Posterior to it is a subdiscoid element of similar size, and a little wider than long, which is in the position of the supratemporal element of the Stegocephalous skull. Its center is the point of divergence of three tubes adready deseriben, and it. ussitication radiates from the same point. Exterior to this alement and the one in front of it, and joining the fosterion face of the malar is a large area in the position of the Stegocephalous sumasal element. Ossification rallates from
the posterior lateral angles of the head shield, and there are two lines which pentrate the matrix more deeply than the rest. I can mot make ont that any canal radiates from this point except the one which reaches to the center of the supratemporal. This region corresponds to that - of the intercalary of the fishes, bat its boundaries I can not make ont.

This arrangement of cranial elements may be compared with those of Uoccostens and Homosteus. It differs from the former in the presence of a malar bone bounding the orbit below, and in the presence of the "squamosal" behind it. In Homostens, elements which occupy the position of the two mentioned are present (Traquair, l. c.), but they are called by Traquair postorbital and marginal, names which he applies to my possible postorbital and supratemporal. I think the elemonts deseribed by Traquair are homologons with the malar and squamosal of Macropetalichtbrs, so that the "postorbital" (my postfrontal) and " marginal" (my supratemporal) must be songht for elsewhere in Homostens. Traquair's "central" appears, from its position, to include my postifonfal, while the supratemporal may be embraced in the anterior part of Traquair's "external oceipital." This question ean, howerer, only be settled by the discovery of intermediate types. In any case, a general affinity to the Arthrodira is indicated by the segmental strncture of the skull, as well as by the character of the tubes of the lateral line system.

The inferior surface of the skull presents the following characters. This is important, as I do not know of any description of this region in an Arthrodire, excepting in the cases of the Dinichthys and Titaniehthers described by Newberry. (Fig. 6.)

In the first place the posterior part of the head-shield, the " median occipital" region of Traquair, is produced very far posteriordy as in Itomostens. This region does not seem to have protected the brain, but rather the anterior part of the vertebral axis, and seems to have been a muchal phate. In the specimen I am now describing, the posterior extremity of this element is broken away for a short distance on both sides of the middle line, reveaing a cast of its interior. This is bilobate, by reason of a rertical constriction at the middle line. That this is not a cast of the cranial cavity is moven not only by its form, but by the fact that there is no cast representing a merhulle oblongate or a forcomen matmum. The chamber was absolntely closed posteriorly. The lateroposteriof angle of thas carity is exposed by the loss of the external wall. It is obtusely angular. T'uning now to the inferior aspeet of the skull, we observed, at the middle line of the inferion-posterior border, a wide, unward excavation, looking backwards and downwamls. It rapilly contracts into a groove with an angular superior middle linc. Whether this groove is part of a tube can not be ascertained, owing to the loss of the bony tissue on each side and below, but it may be only the apical angle of a roof-shaped space, whose lateral slopes are prodnced on each side, sloping well downwads and out-
wards. These sloping faces of the matrix repmesent a pair al assorons phates, which deseromed on each side fiom the shath ol the merelon and chorda dorsatis, for the latter oceraped this fusition in the groome already described. Such a stroture womld indisate the preseme of at nmmber of tixed vertehall elementr, sumh as exists in the chimaran, the rals, and the sturgeons. The two-thirds of the inferior face of the skall which lies in front of this groove is covered hy a simgle thin pate, which may be the parasphenoid. Its posterion border reathes to the anterior extremity of the roof-shaped deseending plates ahready deseribed, amd, joining them ly it rombled angle, farns downwards and ontwards, the desernding bortion stoping forwards into the horizontal portion. Where it joins the desembling plates of the axis there are three grooves on each side, which are separated by two ribs. At the point of jumetion of the parashenoid with the lateral alde of the axis, is situated what I suppose to be the foramen magmom. It is the direcet contimation of the groow alrealy desoribed, and, heing Hoored by the parasphenoid, has a triangular section. 'There is no trace here of a fossa for the choma domsalis, nor of an occipital condyle, mor is it probable that either existed at this point. The patasphemoid is thin, and there are no indications of teeth to be ohserved on it.

For the opportmity of stmelying this specimen I am greatly imbloted to Prol. d. W. Spencer, of the lmbersity of Missouri, and to the late president of that institntion, Prof. S. S. Laws, who lent it to me out of therir masemm.

I here deseribe the eharaters presented by another specimen of Macropetalichthys which belongs to the geological masemm of the state of Ohio, and whela waskind! lent me by the direetor of the sumer, l'rol. EAward Oriton. Thisspeemen is broken transersely across the median part of the area which includes the median ocephital plate, showing that the postrom part of that area is adistanet element serarated from
 gularelements on each side of the posterior rexion, which are also shown to be distinct, 1 all the latemal mehal elements. One of these is wanting in the specimen, showing that its junction with the median element is by a smooth sinmmosal suture. The anterion fiter of the machal mass has a vertical groove on the middle line which tits a corresponding ked of the cranimm proper. The triangula foramen magnum iswes at the inferior extremity of this keel, at the latoral cxtremity of this oceipitommehal sutme moler the free lateral margin of the skall is a fossa, one-half of which is in the eranimm and one-half in the muchal element. 'This looks like an artientar ghomod catity, bossibly for the condyle of a mandible. It is homaded posterionly hy a tramserse "rest, posterior to which is the extensive longitmanal fossat beneath the free border of the muthai plate. 'There is a small fossia on the midnle line 20 millimeters in front of the areipitomuchal sutmer, in the parasphe noid bone. 'The anterior part of the skall is better preserved than in
the sknll of the 77. retheitolubis first described. The borders of the muzrle are bounded on each side by a shaltow lougitudinal fossa, which looks ontward and downward. Each is bonnded on the imner inferior side by a longitudinal crest which looks downards and extents backwards and ontwards. The palate between these ridges is concare from side to side. The median portion is filled with matrix so that the surface and its relations with the parasphenoid can not be seen. The lateral ridges are contimed to below the orbit. In front of the smpo posed glenoid fossa is another longitudinally oval fossa below the edge of the sknll. The chordal groove and the laminar plates deseending on each side of it are as in the specimen first described.

The lateral mochal element is separated from the median, so as to show that the latter has an approximately semicircular ontline when seen from above. Viewed from behind, the mehal element displays an obtuse median vertical keel with a shallow fossa on each side, bounded by an angle on each side at the snperior margin, but fanding ont below. The vertical diameter is considerably greater relatively than in the M. rapheilolubis. I suspect that the specimen belongs to the M. sullirantii Newb.

Returning to the NI. rapheidolab is I observe that the anterior borders of the descending axial ala are abont opposite to the lateral center of rathation of the lateral line tubes, or the center of the so-called supratemporal bone. Below the anterior border of the orbit, on each side of the middle line, abont 7 centimetres apart, is a par of medimmsized round foramina. Exterior to these, a little anteriorly, at donble the suate between the two median foramina, is another pair of foramina of oval section, which look outward, forwadd, and downward. The bony wall of the memal canal, already described, is quite thick.

There is no trace of pineal foramen such as is deseribed by Newherry in Dinichihyids. The selerotica was protected, but whether by a thin extension of the prefrontal and postfrontal bones or by a special ossification is not deteminable. The impression only remains. A considerable fossa is inciosed between the descending axial plates and the lateral borders of the posterior part of the head-shield, which opens downwam amd ontward. The scolpture of the smeface of the sknll is preserved in one or two places. It consists of romm, flattened, rigose tubercies of a diameter of abont 2 millimeters placed close together.

A!finities of Marropetalichthys and of the Arblerodira.-It has been danwn ly Agassiz that Coerostems has a mandibular areh, and by Newberry that this region is present in the Dinichthyida. Traguair has also shown that in the former genas it is connected with the cranimm by a suspensorim. liree elements beneath the anterior part of the head-shield have been demonstrated to exist in Homosters by Traquair, which probably inchade a mandibular areh. The general resemblance of Macropetaliehthys to the Arthrolma remders it almost certain that it possesses a lower jaw, and that it is a member of that order. I have
inelmed this arder in the Cowsophoryia with domht＊on the supposition Hat they possess a maxillary aroh and suspensorimm．The former is however mot deseribed so as to distinguish it from a palatopterygond arch by anthors，and no evidence of the existence of such an areh wan be derived from American forms．Advance sheets of volmme it of the Uatalogne of Fossil Fishes in the British Musemm，by A．Smith Woolwarl，show that this able anthority places the Placodermata in the bipmoi，thms indicating that they possess neither maxillary athe non shspensorimm．

There is moch in the structure of the skall of Macropetalichthys to contirm this opinion．＇The nuchal portion of the structure with its lat－ eral mobal elements is represented by the cartilagimons mass which extends posterior to the median oceipital bone in Ceratodns，in which this rewion has very much the form of the muchal shichd in Macropetat ichthys，althoush it is relatively shorter．The chortal groove with its descending laminar resembles mach the prodned oeeppital bone of Lapiolosirem．The parasphenoid in both Lepidosirem and Ceratodns are prodnced posteriorly abomomally，amd it only neressary tor inagine this bart to be rednced to its normal length to have the conditions fomm in Macroperalidhthys．The broad parasphenoid and romer remind one of that of Ctenodus．As I have shown that Maropetalichthys is allied to Dinichthys，we can add in faror of the suphosition of alfinity to the Dipnoi the peculiar dentition of that genns．The ectetrameronst struc－ fure of the dorsal din shown by Von Koenen and Traquair to exist in Cocoostens，ani shown to be pobably present in Dinichthys by New brry，are in faror of the bipmoan theory．Elements supposed to be the axial elements of pectoral fins are doseribed by Dr．Newherry． These are simple and without lateral articulations，and are thans of the mihasal type which is general in lhipnoi as well as in some Crossop－ terygia and all lhipintoptergia．They somewhat resemble those which I shall deseribe in this paper as characteristic of Megalichthys．It is on accomet of this part of the structure that the Arthrodira can not be arranged near to the stmrgeons，where Macropetalichthys has been pated by Newhery amd others，to say nothing of the cramial structure， which has no resemblance to that of those fishes．

I first referred Macropetalichthys to the Placodermata（Arthronlira） in a review of Professor Newberry＇s work on the Paleozoic Fishes of North Americat in the American Natmralist for September，1590；and this view has been adopted by Mr．A．Smith Woodwad ats above mentioned．

Species of Macropetalichthys．－It is evident that the two crania which I have described in the precerling pages hehong to f wo different species． The larger is the $1 /$ ．rapheidolabis of Owen，and the smaller the $1 /$ ． sullirantii Newberre：In the latter the molal element and its incheded

[^1](hamber have a greater dejeth in proportion to the width and length of the skall than in the former. They may be characterized as follows:

I'osterior nuchal depth $\frac{1}{5}$ th width and $\frac{1}{6}$ th length of skull above; M. rupheidolabis: fig. 4.

Posterior mochal depth entering width behind $2!2$ times and length 43 times; M. stllirentii; fig. 5.

The skull of the M. sullivantio is rather narrower than that of the M. rapheidolabis.

The half width at the foroman magnum enters the length to the anterior border of the lateral marginal fossa $3 \frac{1}{2}$ times, while it enters hot 3 times in the 11. rupheilolabis.

IV-On tife pecioral limb of tile genus Holonema Newberry.

Described from fragmentary or single plates by Claypole and Newbery, the Holonema rugosu Claypole remained a vertebrate of uncertain affinties. At the meeting of the American Association for the Advancement of Science held at Indiamapolis, August, 1890, Prof. H. S. Williams exhibited photographs of the posterior part of the carapace of a newly discovered specimen, which inchudes the greater part of the two median dorsal plates and the posterior laterals. The rounded posterior ontline of the carapace is similar to that seen in Bothriolepis, and neither this nor any of the specimens described up to that time demonstrate the distinctuess of this form from that genms.

In the collection of Mr. R. D. Lacoe, of Pittston, Pennsylvania, which that gentleman kindly placed at my disposal, there are specimens of this gemus from Manstield, 'Joga Comoty, Pennsylyana. The largest of these is a lateral plate of the plastron, partly represented hy a very distinct mold of the matrix. It measures 190 millimetres in length and 10 m millimetres in width. Besides this, there is at neally complate pectoral spine, which is of much interest, as this part of the skeleton has not been previously known. (Fig. 7.)

This spine belongs to a smaller individual than any of those of the Holonemu refgosa yet described, but until the range of dimensions of that species is known it will not be safe to regard it as representing another species. The range of size of the Botimiolepis cemadensis is very considerable. 'The spine differs from that of both Bothriolepis and Dterichthys in being withont complete segmentation. It is contimons throughont to the apex. This, then, will constitute the generic distinction so far known between Holoneman and Bothoiolepis. The tissue of the spine is disposed in tesserat, as in the other genera allied. A single series of three elongate narow hexagons extends down the center of the external fiter, and the lower space is divided by sutures, which extend from the lateral angles of the hexagons to the borler of the spine. 'The apex of the epine from the last hexagon, and for a length nealy equal to it, is not tessellated.

The spine is mealy shatigh and tapers sommetrablly to an atente

 imber edge of the spine is armer will at row of tooth-like processes about twenty two in mmber, which are directed backwarls. There are no teeh on the extermal edge of the spine. The surtace is thown iatorather coarse obtusesomewhat irreghar longitudinal ridges, which inoscolate more or less, and resemble in semotal that of the plate af
 at the midale of the bongth of the spine. Lenglt of spine it millimotres, willt at hase, 11 millimetres, at midale 7 millimetres.

From Manslich, Pemsitvania, dolleded by A. U. Sherwood for R1). Lacoe.

Y.-On the ratred dins of Megalichthys nithots Core.*

This speceides was refere by me to a genns distinct from Magalichthys on ateennt of the ammarar ossitication of the vertehrat, those of the latter gems having heen leseribed bỵ an Emglish anthority as amphicolons. Dr. 'Trannair has, howerer, shown that the vertehar of the Megulirhthys hibbertio are ammar, ame spectanens kimely sent me by Mr. John Wiad, of Longton, Stafordshire, and illentitied as belonging to that gems, ghite resemble those of the h. nitidus. I therefore provisionally, at least, witheraw the generic name which I conferred on the later. It is not uncommon in the Permian bed of Texas. (Fig. S.)

I have described the basis of the posterion part of the skall in this species and in the smatler Jo cioromins ('ope, tand I can now give an aceomf of the ehanacters of the limbs. I am emabled to do this by making lomgitulinal sections of both anterior and posterior limbs of both sides of the lime specimen of the M. nitidus, which served as the type of my oriminal deseription. (Fig. 9.)

The paired lins or limbs are of the "obtnsely lobate" type according to Woodward, bat approach those of the Arthrodia very distinetly. The general form is short for a lin of the mibasal type, as it is fositorm, terminating in a rather rapid acumination. The superior, exterior, and inferior faces are cosered with small scales covered with ganome, and the rays are contined to the intermal edge. The anis of the pectoral tin cons sistsol a single robnst clement, probably carilagimons, hat invested with a thin layer of dense bone. The interior structure is cellular, the cells of irregular amobiform ontlanes, and smromaded bex a distinct layer eotored like the matrix, and not like the osseons tissme. This element extends to the extremity of one of the dins which has matortmately lost its apex. On the other it disappears at three fifths the distance from the base, owing probably to the obliquity of the seetion. On the in-

[^2]ternal border of the fin on both sides short and modivided parallel mys diverge towards the body.

It is evident that this fin does not resemble that of Ceratodns, nor that of any of the mibasal fins of the distiehons type. The axial element is not segmented, unless it be near to the extremity, nor is it branched. It supports simple rays alone, and these at the internal edge only.

The section of the ventral fin shows, like the pectoral fin, rays on the internal border, and also at the extremity. There are none on the extermal border, where the axial bones are close to the integmment. The base of the pubis is exposed. The extremity is coneavo-trumeate, is coarsely celhnar within, and is bounded by a thin external bony layer. Like the pectoral fin, the greater part of the ventral axis is occupied by a single element, which is rol-like, slightly constricted medially, and truncate at the extremities. The proximal extremity equals less than half of that of the pubis, lout it constitutes the axis of the limb, as may be readily seen by reference to the external form of one of them. This fin is bent at this articulation, and is bent again at the extremity of the axial rod, beyond which the apex tapers rather rapidly. The section shows no second axial segment in the distal part of the main axis, but tro pairs of nodules and distad of these two transverse rows of segments of three radii, more distal segments being lost. Those of the proximal row are longer than those of the distal one, and the external are the most robust. The strueture resembles that of a Batrachian farsus or carpus rather eariously; but this may be due to the position of fractures of the radii distad to the axial rod. Another cartilaginons, bonysheathed segment appears in this fin, which is half the dimensions of the prineipal one and projects a little beyond it on its imner side, lying parallel to and close to it. It is followed, after an interspace, by seren radii which lie closely parallel, and soon temmate, probably owing to injury. Each is divided into two or three segments, but whether normally or abnormally can not be stated. There is no segment comecting this one with the pubis, but there is a rom ded extremity of possibly a short stont segment opposite the extremity of the latter, within the proximal extremity of the prineipal axial segment. Whether this fin is unibasal or pluribasal remains therefore uncertain; but if there be more than one elemental axis, there are not more than two.

It remains therefore demonstrated that the fin structure in Megatielthys is very simple, and does not in the least resemble that of Polypterus on the one hand nor that of Ceratodas on the other. It seems to be intermediate in character hetween that of the latter gemms and that of Pterichthys, or perhaps that of the imperfectly known Arthrodira.

Material is not at fresent aceessible in the United Siates from which to learn the structure of the median lins in the Holoptrechiida and Osteolepidida. In drawing mp my symopsis of the Families of the Vertehata, in 18S! *, I assmmed that these fims had the primitive strocture, such as is fomm in the oldest members of the Teleostomi ('Iarassiidar), Dipmoi, and other sublasses, viz, that the axomosts an', ednal in mmber to, and eontimons witl, the menral spines of the Vertebrata. This definition threw the families in question into the Cross opterygitas distinguished from the Rhipidopeterygia. In the latter the axonosts are moll reduced in momber, so that one or two finsed into a single piece supports cach dorsal and anal fin.

Professor Traquair has, however, stated that the dorsal dins of the Osteolepidae are of the Rhipidopterywian type, and Nr. A. Smith Woodwam, in tol. in of the Catalogne of Fossil Fishes in the British Masmm, \dagger eonlirms this statement, and shows that the Holoptychiala agree with them in this respect. He does not adopt the superorder Rhipdopterygia, but combines it with the Crossopterygia, and le places the fimmilies montioned, together with the Rhizodontidir. which is my Tristichopteridir, in the order to which I referred the latter, the Rhipidistia. As regards this original referencr, it is clearly nocessary on the evidence bronght forward by Traquair and ly Woodward. I lo not see, howerer, that the lhipidopterygia can be properys combined with the Crossopteryia, since the strncture of the median fins is radically different, and one which offers as good eronnd for superordinal distinction as do the paired fins offer grommd for the sepr anation of the Aetinoptergia. The Tarassibace and the Polypterina possess the characters of the median fins which I viewed as chatacteristic of the ('rossopterywia, while the pared fins, so far an ("an be discoveredfrom the descriptions of the formerd indicate two distinct orders within it.

With this new information in our possession, it appears to me that the relations of these fishes are best expressed in the following way:

There are four superorders of the 'leleostomi, or trone dishes, which difier in the structure of the fils:
 Paimed tins mibasal
lihipidopherygia
I1. Modian tins with mumerous :axomants.
Paind fins with haseosts: peetorals with asonosts, which aro distinet from hasmosts \qquad l'aired fins with haseosis; pectoral lins will adomosts abl hasensta comfommed ; phribasal I'onlopter!gint Pectoral lins omly with haseosts, these comfommed with asomosts and phat has:ll. . Intinopherygia

RIIIPIDOI'IERSGIA.

The ordere of lhhipidopterygia are the following. They all have actinotrichia in place of fin-rays:
I. Paired fins with the basilars armanged on each side of the mednan axis, or arehipterygial.
Median fins with basilars
Taxistia

```
II. l'aired fins with the basilus arrauged fou-shaped at the end of the short axis.
```


Median fins withont, candal fin with, basilarstinistia

The Taxistia includes but one family, the Holoptychiidar, which is of Devonic and Carbonic age. The Rhipidistia inchudes the Tristichop. teride from the Devonic and Carbonie; the Osteolepide from the same, and possibly the Onychodontide, whieh are Devonic.

The Actinistia inchules the single family of the Colacanthidae, whiek appears in the Tower Carbonic and ranges to the Upper Cretacic in both Europe and Abrerica.

In all of the Rhipidopterygia the tail is either heterocercal or diphycercal and the chordadorsalis persists. The scales have a layer of ganoine, which extends also on the head. The latter has a well-defined persistent transverse suture separating the panetal from the frontal elements.

The Crossopterygia inchades two orders, as follows:

But one family is incheded in the Haplistia, the Tarasiida, from the Lower Carbonic of Scotland. The Cladistia are represented by a family which is not known in the fossil state, the Polypteridie of the rivers of Africa. The vertehat in this genus are ossified and biconcave.

The Porlopterygia has also two orders. They are thas defined:
Branchiostegal rays present
Lysopteri

In these orders the notochord ispersistent, and there are either actinotrichia or fin-rays which are more momerous than the baseosts. Tail heterocercal or diphycereal.

> Yll.-ON NHW SPECHEA OF I'LATYSOMID A\%.
> Platysomus palmaris sp. hov.

This suecies is represented by abont a hundred fragments of bodies of varions sizes, some of which include the seapolar arch, bat none the tims. All the fragments are covered with seales, and in a number of them the median line of the belly is preserved. In the scapular arch the charater of the allied forms is observed in the presence
of a closely fitting interclavienar bone which hounds the recorved inferior extremity of the chavicle on each side. The anterior face of the clavicle is expanded inwards below, so as to be wider than the external face, and its inner edge is in contact with the corresponding edge of the opposite claricle, so as to inclose a short tube with the interclavicles. The scales of the inferior row differ from the others in haviagony half the diameters of the others, so that two scales are articulated to the inferior edge of cath scale of the next to the bot tom row. Each of these narow reptical seales of the inferior row semds up an acute process which fits a corresponding pit in the seale of the row above it. This character resembles what is seen in the genms lienedenia Traquair in a gencral way. There are two such rows of scales in the trpe of that genus, I. dencënsis Traqu., and I ean not make out from Traquairs digure and deseription whether they are longiludinally fissured or not. The figure represents vertical grooves, which may he sutures. The decision of this point mast depend on further examination. I plate this species provisionally in the genus Jlatrsomms, but I do not find this character to be described in other speeies of the genns, according to the descriptions of anthors.

The scale-series tend slighty backward from the vertical below, withont distinet convature. The seales on the sides in front are abont five times as deep as long, and ther gratuate in size to the lowest undivided row, where they are about twiee as deep as long. The small seales of the inferior row are twice as deep as long, and their depth is about hall that of the scales of next series above them. The senpture of the seales consists of marrow rertical ridges, which are curred slightly barkwams below. Ahont tenmay be comed crossing a transverse line on each suale. Each of the matow scales of the inforion row possesses a median angnar keel which extends from the anterior edge downwards and backwards, but which does not reach the posterior edse of the scale. The extemal fate of the clavicle is rertically striate like the seales, and horizontally striate on the recorved portion. The interclavicle has more distant longitudinal ridges, and one ridge on each side of the low median keel is broken minto enamel tubereles.

The body is arote below. 'This is alwaty the case, whether the fracrments are compressed or not.

Mensur-ment.

Diammerrs of anterior median seale:	Min.
Anteroposterior	\because
Vertical	10
Diameters of lowest normal seale:	
Anteroposterior	:
Vertieal	4
Depth of sable of inforior borter (specimen No. dy)	2.5
Length of intrrelavicle (speimen No. :3).	10
Width of interelavicle in front (No. 3)..	'
Diameter of interclavicular tube, transverse (No, 3)	7

From the l'ermian bed of the sonthern Indian Territory. Collected by W. T. Cummins.

I have been principally guided in the determination of this form by the monograph of the Platysomida pobblished by Dr. Traquair, in the Transactions of the Royal Society of Ealinburgh, vol. 29, p. 343. Dr. Traquair there demonstrates clearly that the ilatysomide belong to the Lysopteri near to the Palamiseida, and that they are nut allied to the Dapediidie.

Platysomus lacovianus sp. nov.

Radial formula: D. $28,0.30$, A. 25. Body deep, smperior and inferior ontlines very convex, superior convexity posterior to the inferior. Scales in nearly vertical series of few in a series, each seale with abont nine closely placed parallel ridges. These are parallel to the sides of the seales in the lower and middle parts of the body, but on the superior regions they are direeted forwards as well as downwards, being oblique to the long axis of the seale. The ventral border is furnished with a single series of scales with a free acute extremity, forming a serate line. No sneh series is noticed on the dorsal ontline. The head is badly preserved; the pterotic and post-irontal regions have a striate sculpture like that of the scales.

Length of specimen........-...-.-... 37

Length of base of dorsal lin .. 7
This species is probably allied to the Platysomus cirembris M. \& W.* In it the ratial formala is given at I). 40, O. 30, A. 30 . The scales are also said to be smooth. This may be an appearance only, due to the loss of the ganoine layer; but if correctly stated the scales are very different from those of the P. lacoviunns.

The typical and only specimen of the P. lacorianes is preserved in the cabinet of Mr. J. D. Lacoc, of Pittston, Pennsylvania, to whom I am indebted for the opportunity of examining it. It is in a concretion from the Coal Measmes of Mazon Creek, Illinois.

[^3]
ENMLANATION OF MATMN．

1’aT1：XXIII．

Fig．1．Styphobasis limightana（＇oper，louth matural siza：fig．\＆base view．

 tremities lost；＂font view：b section at open groovr ；essetion at broken apex，\} nat．si\％e．

J＇ルTに スxix．

PLATE XXX．

fieg．A．Holonema sp．pectoral spine，mat．si\％e．

l＇tat：xixi．

l’ig．（i．Diagrams of shperior sides of head shiolds of Hinichthyidate．I Mimichlhys
 Newherry．
 semplure．

1＇LATE XXXII．

 hind tin，botlo from below：nat．size．

1＇LAT：xxxil．

Fig．Lo．Flulysomus pulmuris Coper，parts of ：indiviluals，nal．si\％e：：ar－b inforior patts of plate hand，from 2 ，enlatred ；3u－b front and interior views of seapular arch fron ：el clavinle ；Iel latureclavicle．

[^0]: "Tllo: P'aleozoie Fishes of North America, 1890, p. 4:3.
 f (ieological Masazine, 188!, p. 1, pl. I.
 | 'Trampair, loc. cit.
 §Newherry, l. c., pls. I and III.

[^1]:

[^2]:

[^3]: * Report of the (ieological Survey of lllinois, 1. 3if, I'l. IV, Fiis. 2.

